注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

恰巧路过人间

 
 
 

日志

 
 

芝诺悖论   

2013-07-15 18:51:47|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
当阿基里斯赶到乌龟的出发点时,乌龟已经向前爬了一段,然后当他赶到乌龟爬了一段的点时,乌龟又爬了另外一段……依此类推,以至无穷。
在芝诺悖论中涉及到无限分割后的求和问题,微积分的发展使得对此进行定量分析成为可能。无穷分割后的各部分趋于零但不等于零,其总和不等于零,但也不会是一个无限量。
对于阿基里斯而言,他虽然要无数次的到达某个起始点,但它所走的空间距离并不是一个无限量,追龟情形下的空间距离是:
d/(v1-v2)
(其中d是初始距离,v1,v2分别是快者和慢者的速度)
是一个有限数,对于有限的距离,当然可以在有限的时间内穿过并达到终点。
事实上,隐藏在这个悖论的背后,是我们对于运动本质的思考,即何谓运动?怎样运动?
主要是他们将运动中的无限过程与「无限时间」混为一谈,因为一个无限过程固然需要无限个时间段,但这无限个时间段之总和却可以是一个「有限值」。这个问题说明了古希腊人已经发现了「无穷小量」与「很小的量」这两概念间的矛盾。这个矛盾只有人们掌握了极限知识之后,才能真正地了解。
在芝诺的运动悖论和多悖论中都涉及到无限分割后的求和问题,微积分的发展使得对此进行定量分析成为可能。对于多悖论而言,可以肯定的说,无穷分割后的各部分趋于零但不等于零,其总和不等于零,但也不会是一个无限量。
对于阿喀琉斯而言,他虽然要无数次的到达某个起始点,但它所走的空间距离并不是一个无限量,追龟情形下的空间距离是:
  评论这张
 
阅读(5)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017